查看更多 +
1.材料:環烯烴聚合物 (COP) 和環烯烴共聚物 (COC) 是所有產品的優選材料。這些醫用級塑料是器官芯片和生命科學應用的好材料。
2.抗滲透性:這些(xie)材料(liao)對氧氣(qi)和水(shui)蒸(zheng)氣(qi)的滲(shen)透性非常(chang)低,可(ke)以通(tong)(tong)過(guo)控制培養基中的濃度(du)和通(tong)(tong)量來精確控制微通(tong)(tong)道內(nei)的這些(xie)氣(qi)體。事實上(shang),通(tong)(tong)過(guo)仔細控制這些(xie)參數(shu),可(ke)以在我們的芯片(pian)內(nei)進行(xing)缺氧實驗。
3.無非特(te)異性(xing)吸附問題:其他常(chang)用(yong)于生產器官(guan)芯片 OoC 的化學材料(如 PDMS)存(cun)在非(fei)特(te)異性吸收問題,因(yin)此(ci)無法用(yong)于藥物(wu)(wu)測試實驗(yan)。COP 和 COC 是(shi)疏脂性材料,不(bu)存(cun)在此(ci)問題,因(yin)此(ci)可用(yong)于藥物(wu)(wu)開發和擴散實驗(yan)。
4.光學特性:COP 和 COC 具有出色的光學性能(neng)。這些材料在可見光和近紫(zi)外范(fan)圍(wei)內具有透明度,雙(shuang)折射低,阿貝(bei)數(shu)(Abbe number)高,是(shi)顯微(wei)鏡(jing)應用的理想選(xuan)擇(ze)。
5.良好(hao)的耐(nai)化(hua)學性(xing)和耐(nai)熱性(xing):COP 和 COC 對酸和極性(xing)溶(rong)劑具(ju)有出色的(de)耐化(hua)學性(xing)。此外(wai),這些化(hua)合(he)物具(ju)有較高的(de)玻璃(li)化(hua)轉變溫度,在某(mou)些配方中(zhong)接(jie)近(jin) 190°C。
6.大規(gui)模生產:Beonchip 的產品采用熱塑性(xing)注塑工藝制造(zao),確(que)保了批次之間的可(ke)重復(fu)性(xing),并(bing)允許大批量生產而不(bu)影(ying)響其質量。
7.微(wei)流體兼容性:Beonchip 的微(wei)流體連接(jie)設計用于各(ge)類(lei)型的微流體控制系統,如注射泵、蠕動(dong)泵或基(ji)于壓力的(de)(de)流(liu)量控(kong)制系(xi)統(tong)。我們(men)可以為我們(men)的(de)(de)芯片提供適配器,這(zhe)些適配器與您的(de)流量控制(zhi)系統的(de)魯爾或倒(dao)鉤連(lian)接兼容。
Beonchip目前有標準芯片(pian)和定制(zhi)化芯片(pian),其中有四種類型:
Be-Flow專門用于培養基流動下的細胞培養。它允許在兩個獨立的通道中進行長期的2D或3D培養。Be-Flow兼容各種微流控泵系統,并且由于其入口/出口處的流體儲存器,也可以簡單地與搖床一起使用,請移至“資料下載”獲(huo)取原版的Be-Flow使(shi)用(yong)(yong)說(shuo)明(ming)書及應用(yong)(yong)說(shuo)明(ming)。
應用: 血管(guan)研究、與細胞粘附到血管內皮有關的過程(感染、細胞治療、轉移等)。
舉例:
1.Ayuso, J. M. et al. SU-8 Based Microdevices to Study Self-Induced Chemotaxis in 3D Microenvironments. Front. Mater. 2, 1–10 (2015).
該文章研究SU-8作為復雜細胞培養微裝置結構材料的可行性,展示了一種基于SU-8的微裝置Be-Flow,通過營養限制與細胞自然代謝相結合,細胞表現出向營養源遷移的自然反應,展示了細胞如何適應其微環境的變化。
Be-Transflow通過多孔膜將培養井與微流控通道連接起來,允許研究復雜的培養配置。非常適合空氣液界面(mian)(ALI)培養、內皮/上皮屏(ping)障(zhang)和交互研究。請移至“資料下(xia)載(zai)”獲取原版的Be-Transflow使用說(shuo)明(ming)書及應用說(shuo)明(ming)。
應用: 免(mian)疫系統體外模型、血(xue)管粥(zhou)樣硬化斑塊(kuai)形成、上皮粘(zhan)連等。
舉例(li):
1.Olaizola-Rodrigo et al., S. Reducing Inert Materials for Optimal Cell–Cell and Cell–Matrix Interactions within Microphysiological Systems. Biomimetics, 9, 262. (2024)
該研究使用Be-Transflow研究減少惰性材料以優化微生理系統中的細胞-細胞和細胞-基質相互作用,涉及微生理系統和細胞相互作用領域。
2.Fernandez-Carro, E. et al. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int. J. Mol. Sci. , 25, 4020 (2024)
該研究使用Be-Transflow研究人類皮膚脫細胞ECM水凝膠作為3D體外皮膚老化模型支架,屬于組織工程和皮膚老化模型領域。
Be-Doubleflow由兩個通(tong)(tong)過多孔膜連接的(de)可灌流通(tong)(tong)道組成。在仿生環境中(zhong)探索不同2D和3D培(pei)養之間的(de)相互作用,并(bing)通(tong)(tong)過選擇適合您應用的(de)孔徑來控(kong)制(zhi)相互作用的(de)效(xiao)率(lv)。請移至“資料下載”獲(huo)取原版的Be-Doubleflow使用(yong)說明書及應(ying)用(yong)說明。
應用: 當需要氣(qi)體控制(缺氧、厭氧、缺血-再灌注)、研究循環粒子(細菌、免疫(yi)系統、循環(huan)腫瘤細胞)的影響以及內皮/上皮屏(ping)障,特別是當通量在共培養的兩側都發揮作用時,可使用該芯片進行您的研究。
舉例:
1.Stankovic, T. et al. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. DRUG RESISTANCE UPDATES. 55, pp. 100753. (2021).
該研究使用綜述Be-Doubleflow體外仿生模型用于膠質母細胞瘤藥物響應研究,屬于癌癥研究和藥物篩選領域。
Be-Gradient Barrier Free為(wei)3D細胞(bao)培(pei)養(yang)應用電化學(xue)(xue)梯(ti)度(du)而設計的設備。BE-Gradient兼容各類型的光(guang)(guang)學(xue)(xue)顯(xian)(xian)微(wei)鏡(倒置相差(cha)顯(xian)(xian)微(wei)鏡、共聚焦顯(xian)(xian)微(wei)鏡、熒(ying)光(guang)(guang)顯(xian)(xian)微(wei)鏡等)。Be-Gradient由一(yi)(yi)個細胞(bao)培(pei)養(yang)室和兩(liang)個與其直接(jie)接(jie)觸的通道組成。改(gai)變中央室兩(liang)側通道之間一(yi)(yi)種元素的濃度(du)會產生化學(xue)(xue)梯(ti)度(du)。請(qing)移至“資(zi)料(liao)下載”獲取(qu)原(yuan)版的Be-Gradient Barrier Free使(shi)用(yong)說明書及應用(yong)說明。
應用: 細胞/球體(ti)的侵(qin)襲和遷移、血管(guan)生成(cheng)、轉移、血管(guan)生成(cheng)、趨化、缺血、細胞分化或氧化應激。
舉例:
1.Clara Bayona et al, Development of an organ-on-chip model for the detection of volatile organic compounds as potential biomarkers of tumour progression, Biofabrication 16, 045002 (2024)
該研究使用Be-Gradient Barrier Free開發了一個“器官芯片”模型,用于檢測揮發性有機化合物作為腫瘤進展的潛在生物標志物,屬于癌癥研究、器官芯片技術和生物標志物檢測領域。
2.Olaizola-Rodrigo et al., Tuneable hydrogel patterns in pillarless microfluidic devices, Lab Chip,24, 2094-2106 (2024).
該研究使用Be-Gradient Barrier Free研究可調節水凝膠圖案的無柱微流控設備,涉及微流控技術和水凝膠應用領域。
從微通道尺寸、底(di)座(zuo)厚度、微孔尺寸、底(di)座(zuo)類型等多個角度定制適(shi)合(he)您(nin)研究的芯片。
上海曼博生物醫藥科技有限公司是Beonchip正式授權的中國代理商,您可直接聯系我們或經我們授權的經銷商進行咨詢、定制、選購。
1. Clara Bayona et al, Development of an organ-on-chip model for the detection of volatile organic compounds as potential biomarkers of tumour progression, Biofabrication 16, 045002 (2024)
2. Olaizola-Rodrigo et al., S. Reducing Inert Materials for Optimal Cell–Cell and Cell–Matrix Interactions within Microphysiological Systems. Biomimetics, 9, 262. (2024)
3. Olaizola-Rodrigo et al., Tuneable hydrogel patterns in pillarless microfluidic devices, Lab Chip,24, 2094-2106 (2024).
4. Fernandez-Carro, E. et al. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int. J. Mol. Sci. , 25, 4020(2024)
5. Fernandez-Carro, E. et al. ‘Nanoparticles Stokes radius assessment through permeability coefficient determination within a new stratified epithelium on-chip model’, Artificial cells, nanomedicine, and biotechnology, 51(1), pp. 466–475. (2023).
6. González-Lana, S. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. LAB ON A CHIP. (2023).
7. Ayensa-Jiménez, J. et al. M. Analysis of the parametric correlation in mathematical modeling of in vitro glioblastoma evolution using copulas.MATHEMATICS. 9 – 1, pp. 27 (2021).
8. Pérez-Aliacar. M. et al. Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning pproach. Computers in Biology and Medicine. 135, pp. 104547 (2021).
9. Stankovic, T. et al. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. DRUG RESISTANCE UPDATES. 55, pp. 100753. (2021).
10. Ayensa-Jiménez, J. et al. Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution. SCIENTIFIC REPORTS. 10 – 1, pp. 21193 (2020).
11. Virumbrales-Mu?oz M et al. Enabling cell recovery from 3D cell culture microfluidic devices for tumour microenvironment biomarker profiling. SciRep. (2019).
12. Ayuso, J. M. et al. Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events. Neuro. Oncol. 19, now230 (2017).
13. De Miguel, D. et al. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells. Nanotechnology 27, 185101 (2016).
14. De Miguel, D. et al. Improved Anti-Tumor Activity of Novel Highly Bioactive Liposome-Bound TRAIL in Breast Cancer Cells. Recent Pat.Anticancer. Drug Discov. 11, 197–214 (2016).
15. De Miguel, D. et al. High-order TRAIL oligomer formation in TRAIL_x0002_coated lipid nanoparticles enhances DR5 cross-linking and increases antitumour effect against colon cancer. Cancer Lett. 383, 250–260(2016).
16. Ayuso, J. M. et al. Development and characterization of a microfluidic model of the tumour microenvironment. Sci. Rep. 6, 36086 (2016).
17. Martínez-gonzález, A. et al. Systems Biology of Tumor Microenvironment. vol. 936 (Springer International Publishing, 2016).
18. Ayuso, J. M. et al. SU-8 Based Microdevices to Study Self-Induced Chemotaxis in 3D Microenvironments. Front. Mater. 2, 1–10 (2015).